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Algebra of Effects in the Formalism of Quantum
Mechanics on Phase Space as an M. V.
and a Heyting Effect Algebra∗

Franklin E. Schroeck Jr.1

We prove that the algebra of effects in the phase space formalism of quantum me-
chanics forms an M. V. effect algebra and moreover a Heyting effect algebra. It con-
tains no nontrivial projections. We equip this algebra with certain nontrivial projec-
tions by passing to the limit of the quantum expectation with respect to any density
operator.
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1. INTRODUCTION

An effect in quantum mechanics on a Hilbert space H is an operator A in
H such that 0 ≤ A ≤ I , and two effects, A and B, are added to get A ⊕ B iff
0 ≤ A ⊕ B ≤ I, where A ⊕ B is the operator addition. We wish to specialize this
concept to the effects that arise naturally in the formalism of quantum mechanics
on phase space (Schroeck, 1996). From this, we will have an immediate gener-
alization to H = L2(�, dµ) where � is any space and dµ is a (group-)invariant
measure on �. Then we wish to see what axioms are satisfied by this “algebra” of
effects.

Our plan is to first review the formalism of quantum mechanics on phase
space, then to define the algebra of effects within this formalism, and then to show
that we in fact have an M. V. effect algebra and a Heyting effect algebra. Finally,
we show that from the algebra of effects, which has no nontrivial projections in it,
we may obtain certain nontrivial projections by taking a limit of the expectation
values of the effects.

∗This paper was a submission to the Sixth International Quantum Structure Association Conference
(QS6), which took place in Vienna, Austria, July 1–7, 2002.
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2. THE FORMALISM OF QUANTUM MECHANICS ON PHASE SPACE

In the formalism of quantum mechanics on phase space (Schroeck, 1996),
we begin with a given kinematical locally compact Lie group, G, with Lie algebra
g that is finitely generated. We have in mind taking for G the Heisenberg group,
the Galilei group, the Poincaré group, or even the affine group, etc. (The rest of
this section is a brief review.) Then we find all the symplectic spaces of G. This
is carried out by a bit of argument from Lie group cohomology (Guillemin and
Sternberg, 1991; Schroeck, 1996): Let ω be an element of the 2-cocycle of g,
Z2(g). Let h = {y ∈ g | ω(y, x) = 0 for all x ∈ g}. h is a Lie sub-algebra of g.
Form the subgroup H = exp{h}. If H is a closed subgroup of G, then we define
� = G/H, a (typical) symplectic space with respect to G. We have the G-invariant
measure dµ coming directly from ω. Every symplectic G-space is of the form of
� or a direct sum of such �’s.

� being a symplectic space, we may refer to it as a phase space in the
terminology of physics (Guillemin and Sternberg, 1991). The group elements
of G being just the displacements in �, we have an immediate interpreta-
tion of the generators of G (the Lie algebra g) as the momentum operators,
the position operators, the rotation or spin operators, the dilation operators,
etc.

Let H denote an irreducible representation space for G, and denote the repre-
sentation U (g), g ∈ G. Let σ : G/H → G be a Borel section. (σ is continuous for
all the representations of the kinematical groups.) What comes as a surprise is that,
almost always, we may intertwine H with a subspace of L2(�, dµ) in the following
fashion: Take a fixed η ∈ H, ‖ η ‖ = 1, and form [Wη(ψ)](g) ≡ 〈U (g)η,ψ〉H,
ψ ∈ H. Then take [Wη(ψ)](σ (x)) for x ∈ �. In this way, we think of � as being
embedded in G. For a certain class of the η’s defined below, we find that Wη is
an isometry into a subspace of L2(�, dµ). In fact, there are an infinite number of
such η’s and subspaces of L2(�, dµ) of the form P ηL2(�, dµ) = WηH, with P η

the projection onto the subspace. The spaces P ηL2(�, dµ) = WηH are known to
be orthogonal for the η’s orthogonal in a certain inner product, due to the so-called
Orthogonality Theorem (Schroeck, 1996), since G is locally compact. The precise
condition on the vector η is that 〈U (σ (x))η, η〉H must be square integrable with
respect to dµ, and that U (g)η = α(g)η, α(g) ∈ C, | α(g) | = 1, for all g ∈ H.

These are called the admissibility condition and the α−admissibility condition,
respectively (Schroeck, 1996).

This H is a quantum mechanical representation space, the elements ψ ∈ H

are the wave functions, etc. An observable on H is (taken to be) a self-adjoint
operator on H that may be generated from the elements of the concrete Lie
algebra. (Say, take Sx, Sy, Sz if the system has spin, take Px, Py, Pz,Qx,Qy,Qz

if the system has momentum and position, etc.) Consider g/h and take the extension
σ (g/h) → g. Let σ (g/h) = span {i B1, iB2, . . . , iBn}. Form the (connected) Lie
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group by obtaining

W (x1, . . . , xn) = W (x) = exp{i(x1B1 + · · · + xnBn)}, xi ∈ R.

W (x) is a unitary operator in H since Bi is self-adjoint for each i. Thus we have,
abusing the notation, σ ([g]) = x and U ([g]) = W (x).

The observables are associated with a positive operator valued measure as
follows:

T η(x) = | W (x)η〉〈W (x)η |, x ∈ �.

Note the important property

T η(x)T η(y) 
= 0, for x 
= y,

since

〈W (x)η | W (y)η〉 
= 0 for x 
= y

in general.
A physical interpretation: The η is fixed, and may satisfy additional con-

straints to get special properties for the T ηs. For an interpretation, if ψ is a vector
in H, then

T r(PψT η(x)) = 〈ψ,W (x)η〉〈W (x)η,ψ〉
is the transition probability to the vector state given by W (x)η. We are choosing
an η and then translating it all over, thereby getting an interpretation of what we
are doing here. The fact that 〈W (x)η | W (y)η〉 
= 0 is just a result of the nonlocal
nature of our physical interpretation.

If we now define

T η(�) =
∫

�

T η(x)dµ(x),� a Borel set in�,

then � → T η(�) is a positive operator valued measure (Schroeck, 1996) called a
localization operator for the phase space �. Next, we take

Aη(f ) =
∫

�

f (x)T η(x)dµ(x)

for any µ-measurable function f on �. Note that Aη(χ�) = T η(�). Also note that
Aη(1) = I. From this, we get

‖ Aη(f ) ‖≤ ess sup
x∈�

| f (x) |

and

0 ≤ Aη(f ) ≤ I for 0 ≤ f (x) ≤ 1, a.e. x.
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Note that we have that Aη(f ) = Aη(h) as operators iff f − h is of µ-measure
zero. Later, we will relax this.

A function of the observable B1 in the Lie algebra is given by

Aη(f ) =
∫

�

f (x1)T η(x)dµ(x),

f a function of x1 only. Similarly for Bi. In fact, for each

Bi = ci

∫
�

xiT
η(x)dµ(x), for some 0 < ci ≤ 1,

and for each measurable function f on Bi , there is a function F such that

f (Bi) =
∫

�

F(xi)T
η(x)dµ(x) = Aη(F).

(See the proof in (Schroeck, 1996). It depends on the “informational completeness”
of the Aη—that we can distinguish between all states ρ with the {T r(ρAη(f )) |
f is µ-measurable}. This is equivalent to the condition on η that < W (x)η |
W (y)η >
= 0 for x 
= y. The proof holds in the sense of being in the limit of the
Aη(F).) Note that if f (Bi) = EBi (�i), then f (Bi) 
= Aη(χI×�i×I ).

Definition 2.1. We define the algebra of effects in the formalism of quantum
mechanics on phase space as the set E ≡ {Aη(f ) | f is measurable, 0 ≤ f (x) ≤ 1
a.e. x}. Then define

Aη(f ) ⊕ Aη(h) = Aη(f ) + Aη(h) = Aη(f + h), (2.1)

which, in turn, is such an effect if and only if (f + h)(x) ≤ 1, a.e. x.

We now have the following:

T r(ρAη(f )) =
∫

�

f (x)T r(ρT η(x))dµ(x) =
∫

�

f (x)
∑

i

diT r(Pψi
T η(x))dµ(x)

where ρ = ∑
diPψi

is a general density matrix. We have the interpretation that
when we measure Aη(χ�) in density state ρ we get the probability that ρ will be
in the state PW (x)η for some x ∈ �.

Note that what we will prove about the algebra of effects in our formalism
is, in fact, true about any image in any Hilbert space of the set of fuzzy sets! The
setting of the formalism of quantum mechanics in phase space is just an example.

3. PHYSICAL EXAMPLES

For our first example, we take H = L2(S2) for a system with spin- 1
2 , and

A = S+
z , B = S+

(z+x)/21/2 where S±
u is the projection onto the set of vector states,

ψ, such that S±
u ψ = ψ. See (Schroeck, 1982 and 1996. Chap. II.3.A.). Note that
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{S+
u , S−

u } is a projection valued measure, and thus contains only effects. In L2(S2)
there is only one form of a nontrivial projection, namely

T (x) = 1

2
(I + x · σ ), x ∈ R

3, ‖ x ‖ = 1, σ = (σ1, σ2, σ3)

a representation of the Pauli spin algebra. Thus, the only freedom in choosing an
η is in the direction it “points” on the unit sphere. We have S2 as a homogeneous
space of the rotation group. With the invariant measure µ on S2, normalized so
that µ(S2) = 2, and with η chosen to point in the direction of the North Pole, then
we have

Aη(1) =
∫
S2

T (x)dµ(x) = I,

and

Aη(xj ) =
∫
S2

xjT (x)dµ(x) =
∫
S2

xj

1

2
(I + x · σ )dµ(x) = 1

3
σj .

Hence, we get all the generators iσj of the rotation group on S2. Furthermore, we
can get all effects in the set {Aη(f ) | f is measurable}. The set is informationally
complete in L2(S2).

For our second example, take H = L2(R), A = EP (�1), EP being the spec-
tral measure for P, the momentum, �1 a Borel set in R, and B = EQ(�2), EQ

being the spectral measure for the position, Q, etc. (Note: E(�) = ∫
�

dEλ.) Thus,
these two operators do not commute either, but they are effects, since they are both
projections. Then {iP , iQ, iI } are generating elements of the Lie algebra for the
Heisenberg group. Now take η to stand for a vector state that has

〈η, Pη〉 = 0, 〈η,Qη〉 = 0.

Then, for σ (p, q) = (p, q, 0),

〈W (σ (p, q))η, PW (σ (p, q))η〉 = p and 〈W (σ (p, q))η,QW (σ (p, q))η〉 = q;

that is, T η(p, q) is the state that corresponds to moving η by (p, q) in the phase
space. Aη(χ�) corresponds to a measurement where we take a particle and measure
it by asking if it would transist to any of the states T η(p, q) for (p, q) ∈ �.
Similarly for Aη(F ). For example, we next take B = f (P ) = Aη(F) and C =
j (Q) = Aη(J ) for some F and J between 0 and 1. (Note that F(p, q) = F(p, 0)
and J (p, q) = J (0, q).) Thus

B ⊕ C = Aη(F + J )

as long as (F + J )(x) ≤ 1. It corresponds to the experiment in which you will
describe the particle transisting to the state T η(p, q) located in the fuzzy set
F + J .
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4. THE SET OF EFFECTS FOR THE FORMALISM OF QUANTUM
MECHANICS ON PHASE SPACE AS AN M. V. EFFECT ALGEBRA

While we are considering E equal to the set of effects for the formalism of
quantum mechanics on phase space with respect to η, we may consider exactly
what structure E has within the chain: effect algebra ⊃ interpolation algebra ⊃
Riesz decomposition algebra ⊃ lattice ordered effect algebra ⊃ distributive algebra
⊃ M. V. effect algebra ⊃ Heyting effect algebra ⊃ Boolean algebra. [See Foulis
(2000) for the definitions.] We have previously shown that E is an effect algebra
(Schroeck, 2005). We will show now that E satisfies the axioms of an M. V. effect
algebra, and in fact a Heyting effect algebra, so that it also satisfies the axioms of
all the intermediate algebras as well. It is not a Boolean algebra, as we will show.

Definition 2. We, along with C. C. Chang, D. Mundici and D. Foulis, define an
M. V. algebra as a set (M, 0, I,′ , � ) where M is a set, 0 and I are distinguished
elements of M , ′ is a unary operation on M , � is a binary operation on M that is
associative and commutative, and follows the axioms

a � 0 = a, a � I = I, a′′ = a, 0′ = I, a � a′ = I,

and (the axiom of Łukasiewicz)

(a � b′)′ � a = (b � a′)′ � b.

Then we define a ≤ b ⇔ b = (a � b′)′ � a making (M,≤) a poset. It is a distribu-
tive lattice with a ∨ b = (a � b′)′ � a, a ∧ b = (a′ ∨ b′)′.

Definition 3. An M. V. effect algebra is a set (M, 0, I,⊕), ⊕ is a partially defined
binary operation on M , where (M, 0, I ) is lattice ordered, and a ∧ b = 0 ⇒ a ≤
b′.

We then have the following theorem:

Theorem 1. (Foulis, 2000) Every M. V. effect algebra (M, 0, I,⊕) is equivalent
to an M. V. algebra (M, 0, I,′ , � ).

Outline of proof: ⇐: a ⊕ b is defined iff a ≤ b′.
⇒: We have the lattice properties with the distributive property as well

as ′ defined. So define a � b = a ⊕ (a′ ∧ b). Then the rest follow, the associative
property being tricky.

We must show that E is an M. V. effect algebra. We have already defined ⊕ and
0 and I are the zero and identity operators. (Aη(f ))′ = I − Aη(f ) = Aη(1 − f )
where 1 is the constant function 1(x) = 1.
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Definition 4. Let Aη(f ) and Aη(g) ∈ E . Define

Aη(f ) ∧ Aη(g) = Aη(min(f, g))

where we mean “min” holds at each x ∈ � a.e. µ. Then we also have, with a
similar meaning of “max,”

Aη(f ) ∨ Aη(g) = Aη(max(f, g)) = [Aη(f )′ ∧ Aη(g)′]′.

Now, using the standard connection between (E,⊕,′ , 0, I ) as an M. V. effect
algebra and (E, � ,′ , 0, I ) as an M. V. algebra, we compute, for 0 ≤ f, g ≤ 1,

Aη(f ) � Aη(g) = Aη(f ) ⊕ [Aη(f )′ ∧ Aη(g)]

= Aη(f ) ⊕ [Aη(1 − f ) ∧ Aη(g)]

= Aη(f ) ⊕ Aη(min(1 − f, g))

= Aη(f + min(1 − f, g))

= Aη((min(f + g), 1).

With a slight abuse of notation, we will write this as

Aη(f ) � Aη(g) ≡ Aη((f + g) ∧ 1).

Then � is defined everywhere as a binary operation on E which is commutative
and associative, Aη(f ) � 0 = Aη(f ), Aη(f ) � 1 = 1, Aη(f )′′ = Aη(f ), 0′ = 1,

and Aη(f ) � Aη(f )′ = 1. We next show that the axiom of Łukasiewicz holds:

[Aη(f ) � Aη(g)′]′ � Aη(f ) = [Aη(f ) � Aη(1 − g)]′ � Aη(f )

= Aη({1 + f − g} ∧ 1)′ � Aη(f )

= Aη(1 − {1 + f − g} ∧ 1) � Aη(f )

= Aη([1 + f − {1 + f − g} ∧ 1] ∧ 1),

and

[Aη(g) � Aη(f )′]′ � Aη(g) = Aη([1 + g − {1 + g − f } ∧ 1] ∧ 1).

But these two expressions are equal, as can be checked for the cases 0 ≤
g(x) ≤ f (x) ≤ 1 and 0 ≤ f (x) ≤ g(x) ≤ 1 a.e. We obtain Aη(max(f, g)) =
Aη(f ) ∨ Aη(g) for either result. Moreover,

0 ≤ f ≤ g ≤ 1 iff Aη(f ) ≤ Aη(g) iff Aη(g) = [Aη(f ) � Aη(g)′]′ � Aη(f ).

Thus, (E,≤) is a distributive lattice. In other words, E is an M. V. effect algebra.
We have an alternate proof: Consider the map

f �→ Aη(f ),
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real-valued µ − measurable functions on � between 0 and 1

→ bounded linear operators on H.

Then we have an injection and it suffices to prove that the measurable functions
on � between 0 and 1 form an M. V. effect algebra, which is well known (Foulis,
2000). �

5. THE SET OF EFFECTS FOR THE FORMALISM OF QUANTUM
MECHANICS ON PHASE SPACE AS A HEYTING ALGEBRA

Definition 5. If P is a poset with a 0, then x �→ x̃ is a pseudo-complementation
iff x ∧ y = 0 ⇔ y ≤ x̃ for x, y ∈ P.

Definition 6. A Heyting effect algebra is lattice ordered with a center-valued
pseudo-complementation.

We have a theorem that makes this a bit easier to handle:

Theorem 2. If E is an M. V. effect algebra, then the center of E, C(E), is given
by

C(E) = {c ∈ E | c ∧ c′ = 0}
= {c ∈ E | ∃ d ∈ Esuch that c ∧ d = 0, c ∨ d = I }.

Since E is an M. V. effect algebra, the center of E , C(E), is

C(E) = {c ∈ E | c ∧ c′ = 0}.
But, if c = Aη(f ), then

c ∧ c′ = Aη(f ) ∧ Aη(1 − f ) = Aη(min(f, 1 − f )) = 0

iff min(f, 1 − f ) = 0 a.e.

Thus, f (x) is either 0 or 1 a.e. x. Therefore,

C(E) = {Aη(f ) ∈ E | f (x) ∈ {0, 1} a.e. x}.

Next, consider Aη(f ) ∈ E , f fixed. Consider Aη(g) ∈ E with Aη(f ) ∧
Aη(g) = 0. Thus min(f (x), g(x)) = 0 a.e. x. Take f̃ to be the characteristic func-
tion of the complement of supp (f ). Then Aη(f ) ∧ Aη(g) = 0 for all g ≤ f̃ a.e.
Furthermore, there is no other Aη(g) which has the property Aη(f ) ∧ Aη(g) = 0;
so, Aη(f̃ ) is the pseudocomplement of Aη(f ). But Aη(f̃ ) ∈ C(E), and we have



Algebra of Effects in the Formalism of Quantum Mechanics on Phase Space 2109

shown that E is a Heyting effect algebra. (We also have an alternate proof, using
the fact that we have the injection and using (Foulis, 2000).)

As a consequence, E is an effect algebra, an interpolation algebra, a Riesz
decomposition algebra, a lattice ordered effect algebra, a distributive algebra, (and
an M. V. effect algebra).

6. E IS NOT A BOOLEAN ALGEBRA

We take the axioms for a Boolean algebra as well-known. Then we note that
E is not a Boolean algebra, as we have Aη(f ) ∧ [Aη(f )]′ = Aη(min(f, 1 − f ))

= 0 for a general f .

7. PROJECTIONS COMING FROM THE EFFECT ALGEBRA FOR THE
FORMALISM OF QUANTUM MECHANICS ON PHASE SPACE

We have previously proved that E does not contain any projections other than
the trivial ones (Schroeck, 1996). We wish to see if there is any way to get various
nontrivial projections directly from E .

As an example, we return to the case of spin. With the notation
previously established, we have Aη(f (x)) = Aη( 1

2 (1 + 3b · x)) = T (b). But
f (x) = 1

2 (1 + 3b · x) is not a fuzzy function. In fact −1 ≤ f (x) ≤ 2. There are
other forms of f that will also give T (b), but they are worse in that the corre-
sponding f has a larger range. Consequently, I and 0 are the only projections
in {Aη(f ) | 0 ≤ f (x) ≤ 1}, consistent with what we have proven before. None-
the-less, we have an effect algebra quite different from the algebra of all effects
in L2(S2). Therefore, we have a proper subset of the set of all effects, one that
contains no noncommuting projections.

Now in general, if we have informational completeness for the Aη, as we also
do for the nonrelativistic spinless quantum mechanics with η equal to a Gaussian
for example, we have a curious situation: From the informational completeness,
we can approximate every (bounded, self-adjoint) operator by an operator of the
form Aη(f ), for some measurable f, in a topology that comes from the trace. (See
Healy and Schroeck, 1995; Schroeck, 1996, Chap. III.3.D). But, we can never get
all the operators directly from the effect algebra in which 0 ≤ f ≤ 1.

Notice that in our definition of E , if you have a function f that is zero
except on a set of µ-measure zero, then Aη(f ) = 0. We can make a definition that
effectively defines A(f ) for a function f that is zero except on a set of µ-measure
zero to be nonzero only by enlarging our viewpoint. For this, let ρ be a density
operator (that is a trace class operator of trace one) on L2(�, dµ), and let us
consider T r(ρAη(f )). With the definition

ρclass(x) = T r(ρT η(x))
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and recalling that T η(x) = | W (σ (x))η > < W (σ (x))η |, that W (g) is a unitary
continuous representation of G in L2(�, dµ), and that σ (x) is a continuous cross
section of G, we have that ρclass is a continuous function. Moreover, ρclass(x) is
nonnegative, lies between 0 and 1, and integrates to unity. Thus, it is a Kolmogorov
probability density. Furthermore, we have

T r(ρAη(f )) =
∫

�

ρclass(x)f (x)dµ(x).

Thus, we may take an approximate delta funtion {fn(x)} → δ(x − xo) with respect
to µ, fn ∈ {µ−measurable functions}, fn ≥ 0, for the f in this expression. Define
Nn = ess sup fn. Then N−1

n fn ∈ E and

NnT r
(
ρAη(N−1

n fn)
) = T r(ρAη(fn)) =

∫
�

ρclass(x)fn(x)dµ(x)

→ ρclass(xo) = T r(ρT η(xo)).

In this fashion, we can get the nontrivial projections {T η(xo) | xo ∈ �} from the
algebra of effects, E . We also can get, in this way, any sums of the projections
in {T η(xo) | xo ∈ �}, as well as the Aη(f ) for f any measurable set in � with
measure zero. We can even make a new M. V. algebra from these as well as
the Aη(f )’s. This is equivalent to going from the set of equivalence classes of
measurable functions on � to the set of all measurable functions on �. This is a
well defined process on any set and yields an M. V. algebra, for which we can then
take the operator equivalent. But, this process being a weak process, we cannot
get anything like a product involving these projections and Aη(f )s.

If � is a compact set (such as for spin), we can do quite a bit better. Then
we have that all the bounded operators are in the set {Aη(f ) | f is measurable},
including all the projections. But we still do not have the nontrivial projections
in E .
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